• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 37, Issue 6
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 37, Issue 6
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of Suitable Operating Conditions of Fluid Catalytic Cracking Process by Application of Artificial Neural Network and Firefly Algorithm

    (ندگان)پدیدآور
    Zahedi Abghari, SoroodImani, Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    317.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, a feed forward ANN model was developed and trained with industrial data to investigate the effect of operating variables containing reactor temperature feed flow rate, the temperature of the top of the main column and the temperature of the bottom of the debutanizer tower on quality and quantity of gasoline, LPG flow rate and process conversion. Eventually, validated ANN model and firefly algorithm which is an evolutionary optimization algorithm were applied to optimize the operating conditions. Three different optimization cases including maximization of RON (as the parameter which demonstrates the quality of the gasoline), gasoline flow rate and conversion were investigated. In order to obtain the maximum level of targeted output variables, inlet reactor temperature, temperature of the top of the main column, temperature of the bottom of debutanizer column and feed flow rate should respectively set at 525,138, 169ºC and 43000 bbl/day. Also, sensitivity analysis between the input and output variables were carried out to derive some effective rule-of- thumb to facilitate the operation of the process under unsteady state conditions. The result introduces a methodology to compensate for the negative effect of undesirable variation in some operating variables by manipulating the others.
    کلید واژگان
    Fluid catalytic cracking
    Artificial neural network, firefly algorithm
    Optimization
    RON
    Gasoline
    Oil, Gas & Petrochemistry
    Process Design, Simulation & Control

    شماره نشریه
    6
    تاریخ نشر
    2018-12-01
    1397-09-10
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Department of Upgrading Process, Division of Refinery Process Technology Development, Research Institute of Petroleum Industry (RIPI), Tehran, I.R. IRAN
    Department of Chemical Engineering, MahshahrBranch, Islamic Azad University. Mahshahr, I.R. IRAN

    شاپا
    1021-9986
    URI
    http://www.ijcce.ac.ir/article_29618.html
    https://iranjournals.nlai.ir/handle/123456789/84665

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب