• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 36, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Chemistry and Chemical Engineering (IJCCE)
    • Volume 36, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling

    (ندگان)پدیدآور
    Hassaninejad-Darzi, Seyed KarimEs'haghi, ZarinNikou, Seyed MohammadTorkamanzadeh, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    847.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine (FEXO) and cetirizine (CET) were studied as three pharmaceuticals whose UV-Vis absorption spectra highly overlap each other. The cross-validation leave-one-sample-out procedure was applied and the optimum number of factors was determined. The developed models were subsequently validated through testing with an independent dataset. Furthermore, a simple and fast method for wavelength selection (WS-PLS-1) in the calibration step was presented which involved the calculation of the Net Analyte Signal Regression Plot (NASRP)for each test sample. Highest prediction accuracies corresponded to WS-PLS-1 method with R2 values of 0.994, 0.982 and 0.999 for MONT, FEXO and CET, respectively. The best values of detection limit were also provided by WS-PLS-1 method which obtained to be 0.029, 0.049 and 0.054 mg/L for MONT, FEXO and CET, respectively. According to the results obtained, WS-PLS-1 method was shown to have the potential to be utilized as a promising tool in clinical and pharmaceutical applications.
    کلید واژگان
    Artificial neural networks
    partial least squares
    Montelukast, Fexofenadine
    Cetirizine
    UV-VIS
    Applied Chemistry

    شماره نشریه
    3
    تاریخ نشر
    2017-06-01
    1396-03-11
    ناشر
    Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
    سازمان پدید آورنده
    Department of Chemistry, Faculty of Sciences, Babol Noshirvani University of Technology, Babol, I.R. IRAN
    Department of Chemistry, Faculty of Sciences, Payame Noor University, Tehran, I.R. IRAN
    Department of Chemistry, Faculty of Sciences, Payame Noor University, Tehran, I.R. IRAN
    Department of Chemistry, Faculty of Science, Babol Noshirvani University of Technology, Babol, I.R. IRAN

    شاپا
    1021-9986
    URI
    http://www.ijcce.ac.ir/article_28066.html
    https://iranjournals.nlai.ir/handle/123456789/84554

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب