• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nano Dimension
    • Volume 5, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Nano Dimension
    • Volume 5, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

    (ندگان)پدیدآور
    Sahooli, M.Sabbaghi, S.Maleki, R.Nematollahi, M. M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    547.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Reasearch Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learning models were proposed to represent the thermal conductivity as a function based on the temperature, nanoparticles volume fraction and the thermal conductivity of the nanoparticles. The results of models were in appropriate agreement with the experimental data. This work represents 8 machine learning models for the predicting the thermal conductivity of water-based nanofluids. The models have been trained and tested on two separate sets of data. Three metrics have been employed to evaluate the performance of the models. The best method for each system is selected using results.
    کلید واژگان
    Nanofluids
    Modeling
    Machine Learning
    Thermal conductivity
    prediction

    شماره نشریه
    1
    تاریخ نشر
    2014-03-01
    1392-12-10
    ناشر
    Islamic Azad University-Tonekabon Branch
    سازمان پدید آورنده
    Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
    Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
    Nano Chemical Eng. Dep., Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
    School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

    شاپا
    2008-8868
    2228-5059
    URI
    https://dx.doi.org/10.7508/ijnd.2014.01.007
    http://www.ijnd.ir/article_632715.html
    https://iranjournals.nlai.ir/handle/123456789/80547

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب