• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 9, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of AI and Data Mining
    • Volume 9, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GroupRank: Ranking Online Social Groups Based on User Membership Records

    (ندگان)پدیدآور
    Hashemi, A.Zare Chahooki, M. A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.442 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original/Review Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Social networks are valuable sources for marketers. Marketers can publish campaigns to reach target audiences according to their interest. Although Telegram was primarily designed as an instant messenger, it is used as a social network in Iran due to censorship of Facebook, Twitter, etc. Telegram neither provides a marketing platform nor the possibility to search among groups. It is difficult for marketers to find target audience groups in Telegram, hence we developed a system to fill the gap. Marketers use our system to find target audience groups by keyword search. Our system has to search and rank groups as relevant as possible to the search query. This paper proposes a method called GroupRank to improve the ranking of group searching. GroupRank elicits associative connections among groups based on membership records they have in common. After detailed analysis, five-group quality factors have been introduced and used in the ranking. Our proposed method combines TF-IDF scoring with group quality scores and associative connections among groups. Experimental results show improvement in many different queries.
    کلید واژگان
    Social networks
    instant messenger
    Search Engine
    Ranking
    Telegram

    شماره نشریه
    1
    تاریخ نشر
    2021-01-01
    1399-10-12
    ناشر
    Shahrood University of Technology
    سازمان پدید آورنده
    Software Engineering Department, Yazd University, Daneshgah Street, Yazd, Yazd, Iran
    Software Engineering Department, Yazd University, Daneshgah Street, Yazd, Yazd, Iran

    شاپا
    2322-5211
    2322-4444
    URI
    https://dx.doi.org/10.22044/jadm.2020.8337.1973
    http://jad.shahroodut.ac.ir/article_2015.html
    https://iranjournals.nlai.ir/handle/123456789/790495

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب