• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • The ISC International Journal of Information Security
    • Volume 11, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • The ISC International Journal of Information Security
    • Volume 11, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

    (ندگان)پدیدآور
    Serkani, ElhamGharaee Garakani, HosseinMohammadzadeh, Naser
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.839 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    ORIGINAL RESEARCH PAPER
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing unnecessary features is a solution to this problem. Using machine learning methods is one of the best ways to design an intrusion detection system. Focusing on this issue, in this paper, we propose a hybrid intrusion detection system using the decision tree and support vector machine (SVM) approaches. In our method, the feature selection is initially done by the C5.0 decision tree pruning, and then the features with the least predictor importance value are removed. After removing each feature, the least square support vector machine (LS-SVM) is applied. The set of features having the highest surface area under the Receiver Operating Characteristic (ROC) curve for LS-SVM are considered as final features. The experimental results on two KDD Cup 99 and UNSW-NB15 data sets show that the proposed approach improves true positive and false positive criteria and accuracy compared to the best prior work.
    کلید واژگان
    Intrusion Detection
    Feature selection
    Support Vector Machines
    decision tree

    شماره نشریه
    2
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Iranian Society of Cryptology
    سازمان پدید آورنده
    Department of Computer Engineering, Shahed University, Tehran, Iran
    Network, ITRC
    Department of Computer Engineering, Shahed University, Tehran, Iran

    شاپا
    2008-2045
    2008-3076
    URI
    https://dx.doi.org/10.22042/isecure.2019.164980.448
    http://www.isecure-journal.com/article_91592.html
    https://iranjournals.nlai.ir/handle/123456789/73403

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب