• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Radar and Optical Remote Sensing
    • Volume 1, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Radar and Optical Remote Sensing
    • Volume 1, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detecting and predicting vegetation cover changes using sentinel 2 Data (A Case Study: Andika Region)

    (ندگان)پدیدآور
    emami, sedighehemami, esmail
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    762.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The earth surface is itself a complex system, and land cover variation is a complexprocess influenced by the interference of variables. In this study, the data of Sentinel 2for 2017 and 2016 were processed and classified to study the changes in the Andikaarea. After discovering vegetation changes between two images over the mentionedtime, vegetation increased by 661.74 hectares. Multiple regressions have been used toidentify factors affecting vegetation changes. Multiple regressions can explain therelationship between vegetation changes and the factors affecting them. In order toinvestigate the factors affecting vegetation change, altitude data, distance from theroad, distance from residential areas of the village and river were introduced intoregression equation. Since this method uses three parameters such as Pseudo-R2 andRelative Operation Characteristic (ROC(, 0.23, and 0.696 values for the aboveparameters, which indicates that the model is in good agreement. The results ofregression analysis show that linear composition of height variable as independentvariables in comparison with other parameters has been able to estimate vegetationchange. Subsequently, by using two classified pictures of 2017 and 2016, the amountof vegetation changes was calculated, and Markov chain method was used for 2018forecast changes.
    کلید واژگان
    NDVI
    Sentinel 2
    Cellular Automata Markov and logistic regression

    شماره نشریه
    2
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    Islamic Azad University, Yazd Branch
    دانشگاه آزاد اسلامی واحد یزد
    سازمان پدید آورنده
    Ms in GIS, remote sensing,Yazd Branch, Islamic Azad University, Yazd, Iran
    Graduate student University of electric power systems of the Islamic trends free khomeynishahr

    URI
    http://www.jrors.ir/article_545297.html
    https://iranjournals.nlai.ir/handle/123456789/63700

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب