• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Radar and Optical Remote Sensing
    • Volume 1, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Radar and Optical Remote Sensing
    • Volume 1, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of super-resolution algorithm for detection and recognition of features from MODIS and OLI images at sub-pixel scale using Hopfield Neural Network

    (ندگان)پدیدآور
    Mehrzadeh Abarghooee, Mohammad HoseinSarkargar Ardakani, Ali
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.196 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Fuzzy classification techniques have been developed recently to estimate the classcomposition of image pixels, but their output provides no indication of how theseclasses are distributed spatially within the instantaneous field of view represented bythe pixel. Super-resolution land-cover mapping is a promising technology forprediction of the spatial distribution of each land-cover class at the sub-pixel scale.This distribution is often determined based on the principle of spatial dependence andfrom land-cover fraction images derived with soft classification technology. As such,while the accuracy of land cover target identification has been improved using fuzzyclassification, it remains for robust techniques that provide better spatial representationof land cover to be developed. An approach was adopted that used the output from afuzzy classification to constrain a Hopfield neural network formulated as an energyminimization tool. The network converges to a minimum of an energy function. Thisenergy minimum represents a “best guess" map of the spatial distribution of classcomponents in each pixel. The technique was applied to remote sensing imagery(MODIS & OLI images), and the resultant maps provided an accurate and improvedrepresentation of the land covers. Low RMSE, high accuracy. By using a Hopfieldneural network, more accurate measures of land cover targets can be obtained, The Hopfield neural network used in this way represents a simple, robust, and efficienttechnique, and results suggest that it is a useful tool for identifying land cover targetsfrom remotely sensed imagery at the sub-pixel scale. The present research purpose wasevaluation of HNN algorithm efficiency for different land covers (Land, Water,Agriculture land and Vegetation) through Area Error Proportion, RMSE andCorrelation coefficient parameters on MODIS & OLI images and related ranking,results of present super resolution algorithm has shown that according to precedence,most improvement in feature's recognition happened for Water, Land, Agricultureland and ad last Vegetation with RMSEs 0.044, 0.072, 0.1 and 0.108.
    کلید واژگان
    Fuzzy classification
    Hopfield Neural Network
    Spatial resolution
    Subpixel
    Land cover
    Energy function
    Super resolution

    شماره نشریه
    1
    تاریخ نشر
    2018-06-01
    1397-03-11
    ناشر
    Islamic Azad University, Yazd Branch
    دانشگاه آزاد اسلامی واحد یزد
    سازمان پدید آورنده
    Ms in GIS&RS,Yazd Branch, Islamic Azad University, Yazd, Iran
    GIS&RS Department, Yazd Branch, Islamic Azad University, yazd, Iran

    URI
    http://www.jrors.ir/article_542419.html
    https://iranjournals.nlai.ir/handle/123456789/63693

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب