RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
(ندگان)پدیدآور
HONG, SUNGPUTRIPATHI, MUKUTنوع مدرک
TextResearch paper
زبان مدرک
Englishچکیده
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form, and (2) of the fact that if a C-totally real submanifold of maximum dimension satisfies the equality case, then it must be must be minimal. Two basic inequalities for submanifolds of any Riemannian manofild, one involving scaler curvature and the squared mean curvature and the other involving the invariant and the squared mean curvature are also obtained. These results are applied to get corresponding results for submanifolds of Sasakian space forms.
کلید واژگان
Einstein manifoldSaskian space form
Invarient submanifold
Semi-invarient submanifold
Almost semi-invariant submanifold
CR-submanifold
Slant submanifold
C-totally real submanifold
Ricci curvature
K-Ricci curvature
Scalar curvature.
General
شماره نشریه
2تاریخ نشر
2006-11-011385-08-10
ناشر
Tehran, ACECR at Tarbiat Modares Universityشاپا
1735-44632008-9473
Related items
Showing items related by title, author, creator and subject.
-
Non existence of totally contact umbilical slant lightlike submanifolds of indefinite Sasakian manifolds
Sachdeva, R.؛ Kumar, R.؛ Singh Bhatia, S. (Springer and the Iranian Mathematical Society (IMS), 2014-10-01)We prove that there do not exist totally contact umbilical proper slant lightlike submanifolds of indefinite Sasakian manifolds other than totally contact geodesic proper slant lightlike submanifolds. We also prove ...
-
Warped product slant submanifolds of nearly Kähler manifolds
Kawamura, M. (Iranian Mathematical Society, 2025-01-01)We study warped product slant submanifolds of nearly Kähler manifolds. First, we introduce the concept of warped product quasi bi-slant submanifolds in almost Hermitian manifolds and show that every warped product quasi ...
-
Gevrey regularity on maximally real submanifolds
Yesuf, J. (Iranian Mathematical Society, 2024-03-01)The Fourier -Br\'os -Iagolnitzer (FBI) transform is the right tool to characterize microlocal analyticity, microlocal smoothness, and Gevrey regularity. In this paper, we characterize microlocal Gevrey regularity ...




