• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 12, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 12, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint

    (ندگان)پدیدآور
    Raissi, SadighRooeinfar, RamtinGhezavati, Vahid Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    994.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine's job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fixed interval preventive maintenance (PM) and budget constraint are considered.PM activity is a crucial task to reduce the production efficiency. In the current research we focused on a scheduling problem which a job is processed at the upstream stage and all the downstream machines get busy or alternatively PM cost is significant, consequently the job waits inside the buffers and increases the associated holding cost. This paper proposes a new more realistic mathematical model which considers both the PM and holding cost of jobs inside the buffers in the stochastic flexible flow shop scheduling problem. The holding cost is controlled in the model via the budget constraint. In order to solve the proposedmodel, three hybrid metaheuristic algorithms are introduced. They include a couple of well-known metaheuristic algorithms which have efficient quality solutions in the literature. The two algorithms of them constructed byincorporationof the particle swarm optimization algorithm (PSO) and parallel simulated annealing (PSA) methods under different random generation policies. The third one enriched based on genetic algorithm (GA) with PSA. To evaluate the performance of the proposed algorithms, different numerical examples are presented. Computational experiments revealed that the proposed algorithms embedboth desirable accuracy and CPU time. Among them, the PSO-PSAП outperforms than other algorithms in terms of makespan and CPU time especially for large size problems.
    کلید واژگان
    Stochastic flexible flow shop
    Budget constraint
    Preventive maintenance
    Genetic Algorithm
    Simulated Annealing
    Particle Swarm Optimization
    Scheduling

    شماره نشریه
    2
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    QIAU
    سازمان پدید آورنده
    School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
    School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
    School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2251-9904
    2423-3935
    URI
    https://dx.doi.org/10.22094/joie.2018.242.1532
    http://www.qjie.ir/article_543744.html
    https://iranjournals.nlai.ir/handle/123456789/57976

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب