• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 9, Issue 19
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Optimization in Industrial Engineering
    • Volume 9, Issue 19
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers

    (ندگان)پدیدآور
    Bagherinejad, JafarDehghani, Mina
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    2.188 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Manuscript
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimization tool for solving this problem. The proposed methodology is based on a new variant of ant colony optimization (ACO) specialized in multi-objective optimization problem. To aid the decision maker choosing the best compromise solution from the Pareto front, the fuzzy-based mechanism is employed for this purpose. For ensuring the robustness of the proposed method and giving a practical sense of this study, the computational results are compared with those obtained by NSGA-II algorithm. Results show that both NSACO and NSGA-II algorithms can yield an acceptable number of non-dominated solutions. In addition, the results show while the distribution of solutions in the trade-off surface of both NSACO and NSGA-II algorithms do not differ significantly, the computational CPU time of NSACO is considerably lower than that of NSGA-II. Moreover, it can be seen that the fast NSACO algorithm is more efficient than NSGA-II in the viewpoint of the optimality and convergence.
    کلید واژگان
    Bi-objective optimization
    capacitated allocation
    distribution centers
    non-dominated sorting ant colony optimization
    NSGA-II
    Production Planning and Control

    شماره نشریه
    19
    تاریخ نشر
    2016-03-01
    1394-12-11
    ناشر
    QIAU
    سازمان پدید آورنده
    University of Alzahra
    University of Alzahra

    شاپا
    2251-9904
    2423-3935
    URI
    https://dx.doi.org/10.22094/joie.2016.230
    http://www.qjie.ir/article_230.html
    https://iranjournals.nlai.ir/handle/123456789/57886

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب