• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Rangeland Science
    • Volume 6, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Rangeland Science
    • Volume 6, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

    (ندگان)پدیدآور
    Mohamadi, Sedigheh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    610.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research and Full Length Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most suitable method of supervised classification for preparing the land use maps involving no grazing, heavy and moderate grazing rangelands, ploughed rangelands for harvesting licorice roots and dry land and fallow lands in Baft, Kerman province, Iran. After being assured of accuracy and lack of geometric and radiometric errors, the images of Landsat and ETM+ sensors achieved on 3 July 2014 have been used. A variety of algorithms involving Mahalanobis distance, Minimum distance, Parallelepiped, Neural network, Binary encoding and Maximum likelihood was investigated based on field data which were obtained simultaneously. These algorithms were compared with respect to error matrix indices, Kappa coefficient, total accuracy, user accuracy and producer accuracy of maps using ENVI 4,5. The results indicated that the Maximum likelihood algorithm with Kappa coefficient and total accuracy of map estimated as 0.969 and 97.77% were regarded as the best supervised classification algorithm in order to prepare the land use maps. Mahalanobis distance algorithm had a low ability for recognizing two types of dry land and fallow land uses concerning the extracted maps. According to the findings, various land use maps as rangelands under three grazing intensities and ploughed rangelands to harvest the licorice roots provided by the means of algorithms related to neural networks were not of sufficient accuracy. The highest Kappa coefficient of Neural network algorithms was estimated as 0.5 and attributed to the algorithm of multilayer perceptron neural network with the logistic activation function and one hidden layer.
    کلید واژگان
    Rangeland ecosystem
    land use
    Remote Sensing
    Accuracy
    Neural network
    Remote Sensing (RS)

    شماره نشریه
    4
    تاریخ نشر
    2016-10-01
    1395-07-10
    ناشر
    IA University, Borujerd Branch
    سازمان پدید آورنده
    Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    شاپا
    2008-9996
    2423-642X
    URI
    http://www.rangeland.ir/article_524073.html
    https://iranjournals.nlai.ir/handle/123456789/56550

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب