• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fisheries Sciences
    • Volume 19, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fisheries Sciences
    • Volume 19, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimation of body weight of Sparus aurata with artificial neural network (MLP) and M5P (nonlinear regression)–LR algorithms

    (ندگان)پدیدآور
    Sangün, LeventGüney, O.İÖzalp, PelinBaşusta, Nuri
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    272.3کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    In this study, morphometric features such as total length, standard length, and fork length obtained from a total of 321 Sparus aurata species, including 164 females and 157 males, captured between 2012-2013 from İskenderun Bay were used as input value, while weight was used as an output value. The Artificial Neural Network (MLP-Multi Layer Perceptron) as well as the M5P algorithm and Linear Regression (LR) algorithm from version 3.7.11 of the WEKA Program were applied. When coefficients of correlation were assessed, the MLP algorithm for males, females and the total were calculated as 0.9686, 0.9605 and 0.9663, respectively; the M5P algorithm for males, females and the total were calculated as 0.9722, 0.9596 and 0.9735, respectively; and the LR Model for males, females and the total were calculated as 0.9777, 0.9498 and 0.9473, respectively. With respect to the Mean Absolute Error (MAE) calculations, the MLP algorithm MAE values for males, females and the total were calculated as 2.94, 2.57 and 2.7074, respectively; the M5P algorithm MAE values for males, females and the total were calculated as 2.400, 2.641 and 2.157, respectively; and the LR Model MAE values for males, females and the total were calculated as 3.217, 2.811 and 3.11, respectively. It can also be concluded from the study that, in order to predict ANN interactions Nonlinear Regression model is more effective and access a better performance than the conventional models.
    کلید واژگان
    Weka 3.7.11
    Artificial Neural Network-MLP
    M5P
    Sparus aurata
    Morphometric feature
    İskenderun Bay

    شماره نشریه
    2
    تاریخ نشر
    2020-03-01
    1398-12-11
    ناشر
    Agricultural Research,Education and Extension Organization
    سازمان پدید آورنده
    University of Çukurova

    شاپا
    1562-2916
    2322-5696
    URI
    https://dx.doi.org/10.22092/ijfs.2018.117010
    https://jifro.areeo.ac.ir/article_117010.html
    https://iranjournals.nlai.ir/handle/123456789/4910

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب