• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fisheries Sciences
    • Volume 17, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Fisheries Sciences
    • Volume 17, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

    (ندگان)پدیدآور
    Yousef Kalafi, ElhamTan Wooi, BoonTown, ChristopherKaur Dhillon, Sarinder
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    695.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we developed a fully automated identification model for monogenean images based on the shape characters of the haptoral organs of eight species: Sinodiplectanotrema malayanum, Diplectanum jaculator,Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Linear Discriminant Analysis (LDA) method was used to reduce the dimension of extracted feature vectors which were then used in classification with the K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN) classifiers for identification of monogenean specimens of eight species. The need for the discovery of new characters for identification of species has been acknowledged for log by systematic parasitology. Using overall form of anchors and bars for extraction of features were lead to achieve acceptable results in automated classification of monogenean. To date, this is the first fully automated identification model for monogeneans with an accuracy of 86.25% using KNN and 93.1% using ANN.
    کلید واژگان
    monogenean
    Morphology
    fish parasite
    automated image recognition
    Artificial Neural Networks
    k-nearest neighbor
    digital image processing

    شماره نشریه
    4
    تاریخ نشر
    2018-10-01
    1397-07-09
    ناشر
    Agricultural Research,Education and Extension Organization
    سازمان پدید آورنده
    Institute of Biological Sciences, Faculty of Science,
    Institute of Biological Sciences, Faculty of Science,
    Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK
    Institute of Biological Sciences, Faculty of Science,

    شاپا
    1562-2916
    2322-5696
    URI
    https://dx.doi.org/10.22092/ijfs.2018.117017
    https://jifro.areeo.ac.ir/article_117017.html
    https://iranjournals.nlai.ir/handle/123456789/4805

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب