Admissible inertial manifolds for second order in time evolution equations
(ندگان)پدیدآور
Le, Anhنوع مدرک
TextOriginal Article
زبان مدرک
Englishچکیده
We prove the existence of admissible inertial manifolds for the second order in time evolution equations of the form $$ ddot{x}+2varepsilon dot{x}+Ax=f(t,x)$$ when $A$ is positive definite and self-adjoint with a discrete spectrum and the nonlinear term $f$ satisfies the $varphi$-Lipschitz condition, that is, $|f(t,x)-f(t,y)|leqslantvarphi(t)left |A^{beta}(x-y)right |$ for $varphi$ belonging to one of the admissible Banach function spaces containing wide classes of function spaces like $L_{p}$-spaces, the Lorentz spaces $L_{p,q}$, and many other function spaces occurring in interpolation theory.
کلید واژگان
Admissible inertial manifoldssecond order in time evolution equations
admissible function spaces
Lyapunov--Perron method
35 Partial differential equations
شماره نشریه
2تاریخ نشر
2020-07-011399-04-11




