On Certain Conditions for Convex Optimization in Hilbert Spaces
(ندگان)پدیدآور
Okelo, Benardنوع مدرک
TextOriginal Article
زبان مدرک
Englishچکیده
In this paper convex optimization techniques are employed for convex optimization problems in infinite dimensional Hilbert spaces. A first order optimality condition is given. Let $f : mathbb{R}^{n}rightarrow mathbb{R}$ and let $xin mathbb{R}^{n}$ be a local solution to the problem $min_{xin mathbb{R}^{n}} f(x).$ Then $f'(x,d)geq 0$ for every direction $din mathbb{R}^{n}$ for which $f'(x,d)$ exists. Moreover, Let $f : mathbb{R}^{n}rightarrow mathbb{R}$ be differentiable at $x^{*}in mathbb{R}^{n}.$ If $x^{*}$ is a local minimum of $f$, then $nabla f(x^{*}) = 0.$ A simple application involving the Dirichlet problem is also given.
کلید واژگان
Optimization problemconvex function
Hilbert space
46 Functional analysis
47 Operator theory
شماره نشریه
2تاریخ نشر
2019-07-011398-04-10




