• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Signal Processing and Renewable Energy
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Signal Processing and Renewable Energy
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Method Based on Support Vector Machines to Classify Bank Transactions

    (ندگان)پدیدآور
    Tojjari, MelikaFarazkish, Razieh
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    349.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Improvements in information technology have contributed to the development of the e-banking industry. Specifically, despite the reduction of bank charges, e-banking is one of the payment methods that, by employing it based on valid theory, can be successful in satisfying customers due to the easiness of access to financial transactions at any time and place with minimum required tools. A mobile device imposes an increasing amount of time, energy and expense in comparison with face-to-face visits. In spite of many benefits this channel has for customers, there are security concerns for service providers and users in the banking sector. Consequently, in this inquiry, the focus is on the role of the support vector machine neural network in the classification of Mellat mobile transactions.  To implement the intended procedure, after compiling the information in the preprocessing stage and purification and normalization of data, feature selection is done with the main component analysis algorithm. Then, in post-processing stage, the Neural Network supports the Mobile Banking classification as a safe but fake system. In order to compare the suggested method, we use Bayon floors and multilayer perceptron. The outcomes demonstrate that the support vector machine neural network can fulfill the classification of user's mobile banking transaction with a mean square error of 0.216 and a precision of 94.6% of all data.
    کلید واژگان
    Mobile banking transactions
    Classification
    Main component analysis algorithm
    Support vector machine
    About Journal

    شماره نشریه
    2
    تاریخ نشر
    2019-06-01
    1398-03-11
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
    Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

    شاپا
    2588-7327
    2588-7335
    URI
    http://spre.azad.ac.ir/article_667512.html
    https://iranjournals.nlai.ir/handle/123456789/45933

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب