• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Web Research
    • Volume 2, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • International Journal of Web Research
    • Volume 2, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploring the Efficiency of Topic-Based Models in Computing Semantic Relatedness of Geographic Terms

    (ندگان)پدیدآور
    Sadr, HosseinNazari, MozhdehPedram, Mir mohsenTeshnehlab, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    730.1کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Large number of semantic relatedness measures have been presented since the last decades.  In spite of an extensive number of studies that have been conducted in this field, the understanding of their foundation is still limited in real world applications. In this paper, the state-of-the-art semantic relatedness measures are surveyed and in the following a unified topic-based models is proposed to highlight their equivalences and propose bridges between their theoretical bases. Presentation of a comprehensive unified approach of topic based models induces readers to have common understanding of them in spite of the complexities and differences between their architecture and configuration details. Moreover, it may underlie fundamental development of these models. Comprehensive experiments in application of semantic relatedness of geographic phrases have been conducted to evaluate topic based models in comparison to ontology-based models. Based on the obtained results, not only topic-based models in comparison to ontology-based models confront with fewer restrictions in real world, but also their performance in computing semantic relatedness of geographic phrases is significantly superior to ontology-based models.
    کلید واژگان
    Semantic Relatedness
    Topic-based Models Latent Semantic Analysis
    Latent Dirichlet Allocation
    Explicit Semantic Analysis
    Geographical Information Science Introduction

    شماره نشریه
    2
    تاریخ نشر
    2019-12-01
    1398-09-10
    ناشر
    University of Science and Culture
    سازمان پدید آورنده
    Department of Computer Engineering Rasht Branch, Islamic Azad University Rasht, Iran
    Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
    Department of Electrical and Computer Engineering Faculty of Engineering, Kharazmi University Tehran, Iran
    Industrial Control Center of Excellence, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

    شاپا
    2645-4335
    2645-4343
    URI
    https://dx.doi.org/10.22133/ijwr.2020.225866.1056
    http://ijwr.usc.ac.ir/article_110289.html
    https://iranjournals.nlai.ir/handle/123456789/45573

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب