On socle and Property (A) of the f-ring $Frm(mathcal{P}(mathbb R), L)$
(ندگان)پدیدآور
Estaji, A. A.Estaji, A. ATaha, M.نوع مدرک
Textresearch paper
زبان مدرک
Englishچکیده
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in$L$. $f$-ring $mathcal{R}(L_{ tau})$  is equal to the set  $${fin Frm(mathcal{P}(mathbb R), L): f(mathfrak{O}(mathbb R))subseteq tau} .$$ In this paper, for every complemented element  $ain L$ with $a, a'in tau$,  we introduce anidempotent element $f_{a}$ belong to $mathcal{R}(L_{ tau})$ and we show that an ideal $I$ of  $mathcal{R}(L_{ tau})$ is minimal  if and only if  there exists an atom $a$ of $L$  such that $I$ is generated by $ f_a$  if and only if  there exists an atom $a$ of $L$  such that $ I={fin mathcal{R}(L_{ tau}): coz(f)leq a} $.  Also, we prove that  the socle of $f$-ring $mathcal{R}(L_{ tau})$ consists of those $f$ for which $coz (f)$ is a join of finitely many atoms and finally, we show that  the $f$-ring $mathcal{R}(L_{ tau})$  has Property (A) and  if $L$ has a finite number of atoms then the residue class ring  $ frac{mathcal{R}(L_{ tau})}{Soc (mathcal{R}(L_{ tau}))}$ has Property (A).
کلید واژگان
Minimal idealf-ring
Socle of ring
Ring with property (A)
شماره نشریه
22تاریخ نشر
2020-02-011398-11-12
ناشر
Science and Research Branch, Islamic Azad Universityدانشگاه آزاد اسلامی واحد علوم و تحقیقات
سازمان پدید آورنده
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, IranFaculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran




