• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 4, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Real-Time Warning System for Rear-End Collision Based on Random Forest Classifier

    (ندگان)پدیدآور
    Teimouri, FatemeGhatee, Mehdi
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.544 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Rear-end collision warning system has a great role to enhance driving safety. In this system, some measures are used to evaluate the safety and in the case of dangerous, the system warns drivers. This system should be executed in real-time, to remain enough time to avoid collision with the front vehicle. To this end, in this paper, a new system is developed by using a random forest classifier to extract knowledge about warning and safe situations. This knowledge can be extracted from accidents and vehicle trajectory data. Since the data of these situations are imbalanced, a combination of cost-sensitive learning and classification methods was used to improve the sensitivity, specificity, and processing time of classification. To evaluate the performance of this system, vehicle-trajectory-data of 100 cars that have been provided by Virginia tech transportation institute, are used. The comparison results are given in terms of accuracy and processing time. By using TOPSIS multi-criteria selection method, it is shown that the implemented classifier is better than different classifiers including Bayesian network, Naive Bayes, MLP neural network, support vector machine, k-nearest neighbor, rule-based methods and decision tree. The implemented random forest gets 88.4% accuracy for detection of the dangerous situations and 94.7% for detection of the safe situations. Also, the proposed system is more robust compared with the perceptual-based and kinematic-based algorithms.
    کلید واژگان
    Rear-end collision
    Driver assistant systems
    Data mining
    Classification Algorithms
    TOPSIS
    Machine Learning

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Department of Computer Science, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
    Department of Computer Science, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2020.217605.1172
    http://www.jsoftcivil.com/article_104357.html
    https://iranjournals.nlai.ir/handle/123456789/44905

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب