• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 3, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 3, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Forecasting of Wind-Wave Height by Using Adaptive Neuro-Fuzzy Inference System and Decision Tree

    (ندگان)پدیدآور
    Bozorgzadeh, LyaghatBakhtiari, MortezaShani Karam Zadeh, NimaEsmaeeldoust, Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.275 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Wind-induced waves are considered to be the most important waves in the sea due to their high energy and frequency. Among the characteristics of the waves, height is one of the most important parameters that are used in most equations related to marine engineering designs. Since the application of soft computing methods in marine engineering has been developed in recent years, in present research, an adaptive neuro-fuzzy inference system and a decision tree have been used to predict the wind-induced wave height in Bushehr port. In order to identify the effective parameters, implementing different models from different inputs. By considering the accuracy of the models, the effective parameters in wave height were identified using statistical measures correlation coefficient (r), Mean Square Error (MSE). The final results of this study showed that in the prediction of wind-induced wave height, compared to the decision tree, the accuracy of the model of the neural-fuzzy system for 3, 6 and 9 hours was higher. Also, the results showed that the use of wind shear velocity instead of wind speed at 10 meters above the water level had a higher accuracy in forecasting of the significant wave height. The results also indicated that among the presented models, the combined model of the significant wave height, shear velocity, and the difference between the direction and wind speed as well as the length of the fetch has the highest accuracy.
    کلید واژگان
    Wind-induced waves
    Energy
    significant wave height
    adaptive neuro-fuzzy inference system
    decision tree
    Bushehr Port
    mean square error
    Fuzzy Logic and Fuzzy Systems

    شماره نشریه
    3
    تاریخ نشر
    2019-07-01
    1398-04-10
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Graduate Master of Science of Coastal, Port and Marine Science Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
    Assistant Professor, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
    Assistant Professor, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
    Assistant Professor, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2019.199291.1125
    http://www.jsoftcivil.com/article_95949.html
    https://iranjournals.nlai.ir/handle/123456789/44897

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب