• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial neural networks prediction of compaction characteristics of black cotton soil stabilized with cement kiln dust

    (ندگان)پدیدآور
    Bunyamin, SalahudeenIjimdiya, ThomasEberemu, AdrianOsinubi, Kolawole
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.755 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Artificial neural networks (ANNs) that has been successfully applied to structural and most other disciplines of civil engineering is yet to be extended to soil stabilization aspect of geotechnical engineering. As such, this study aimed at applying the ANNs as a soft computing approach that were trained with the feed forward back-propagation algorithm, for the simulation of optimum moisture content (OMC) and maximum dry density (MDD) of cement kiln dust-stabilized black cotton soil. Ten input and two output data set were used for the ANN model development. The mean squared error (MSE) and R-value were used as yardstick and criterions for acceptability of performance. In the neural network development, NN 10-5-1 and NN 10-7-1 respectively for OMC and MDD that gave the lowest MSE value and the highest R-value were used in the hidden layer of the networks architecture and performed satisfactorily. For the normalized data used in training, testing and validating the neural network, the performance of the simulated network was satisfactory having R values of 0.983 and 0.9884 for the OMC and MDD, respectively. These values met the minimum criteria of 0.8 conventionally recommended for strong correlation condition. All the obtained simulation results are satisfactory and a strong correlation was observed between the experimental OMC and MDD values as obtained by laboratory tests and the predicted values using ANN.
    کلید واژگان
    Artificial Neural Networks
    Black cotton soil
    Cement kiln dust
    Maximum dry density
    Optimum moisture content
    Soil stabilization
    Artificial Neural Networks

    شماره نشریه
    3
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Samaru College of Agriculture, Division of Agricultural Colleges, Ahmadu Bello University, Zaria, Nigeria.
    Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
    Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
    Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2018.128634.1059
    http://www.jsoftcivil.com/article_63018.html
    https://iranjournals.nlai.ir/handle/123456789/44872

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب