• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 2, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Connectivity and Flowrate Estimation of Discrete Fracture Network Using Artificial Neural Network

    (ندگان)پدیدآور
    Esmailzadeh, AkbarKamali, AbbasShahriar, KuroshMikaeil, Reza
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.217 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Hydraulic parameters of rock mass are the most effective factors that affect rock mass behavioral and mechanical analysis. Aforementioned parameters include intensity and density of fracture intersections, percolation frequency, conductance parameter and mean outflow flowrate which flowing perpendicular to the hydraulic gradient direction. In order to obtain hydraulic parameters, three-dimensional discrete fracture network generator, 3DFAM, was developed. But unfortunately, hydraulic parameters obtaining process using conventional discrete fracture network calculation is either time consuming and tedious. For this reason, in this paper using Artificial Neural Network, a tool is designed which precisely and accurately estimate hydraulic parameters of discrete fracture network. Performance of designed optimum artificial neural network is evaluated from mean Squared error, errors histogram, and correlation between artificial neural network predicted value and with discrete fracture network conventionally calculated value. Results indicate that there is acceptable value of mean squared error and also major part of estimated values deviation from actual value placed in acceptable error interval of (-1.17, 0.85). In the other hand, excellent correlation of 0.98 exist between predicted and actual value that prove reliability of designed artificial neural network.
    کلید واژگان
    hydraulic parameters
    Rock mass
    discrete fracture network(DFN)
    Artificial Neural Network
    connectivity
    Artificial Neural Networks

    شماره نشریه
    3
    تاریخ نشر
    2018-07-01
    1397-04-10
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Mining and metallurgical department, Urmia university of Technology.
    Amirkabir university of technology
    Amirkabir university of technology
    Urmia university of Technology

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2018.105018.1031
    http://www.jsoftcivil.com/article_59741.html
    https://iranjournals.nlai.ir/handle/123456789/44869

    Related items

    Showing items related by title, author, creator and subject.

    • A Comprehensive Security Framework for Wireless Sensor Networks using SHA256 and CNNs 

      Al-fatlawi, K.؛ Kazemitabar, J. (Materials and Energy Research Center, 2025-01-01)
      Wireless Sensor Networks (WSNs) serve as vital infrastructure across various domains; yet face escalating cyber threats that challenge their security and integrity. Current security approaches exhibit limitations, such as ...

    • Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation 

      Sharifi, Abbas Ali؛ Mofarreh-Bonab, Mohammad (2018-06-01)
      Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing ...

    • Emotional Speech Recognition using Deep Learning 

      Othman O. Khalifa؛ M. I. Alhamada؛ Aisha H. Abdalla (Isfahan, Islamic Azad University. Majesi City Council, 2020-12-26)
      Emotion speech recognition (SER) is to study the formation and change of speaker’s emotional state from his/her speech signal. The main purpose of this field is to produce a convenient system that is able to effortlessly ...

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب