• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Link Prediction using Network Embedding based on Global Similarity

    (ندگان)پدیدآور
    Mirmousavi, S. F.Kianian, S.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.038 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link prediction methods identify all path structures in a network and can determine the similarity degree between graph-extracted entities with high accuracy but are time-consuming instead. Most existing algorithms are only using one type of feature (global or local) to represent data, which not well described due to the large scale and heterogeneity of complex networks. Methods: In this paper, a new method presented for Link Prediction using node embedding due to the high dimensions of real-world networks. The proposed method extracts a smaller model of the input network by getting help from the deep neural network and combining global and local nodes in a way to preserve the network's information and features to the desired extent. First, the feature vector is being extracted by an encoder-decoder for each node, which is a suitable tool for modeling complex nonlinear phenomena. Secondly, both global and local information concurrently used to improve the loss function. More obvious, the clustering similarity threshold considered as the local criterion and the transitive node similarity measure used to exploit the global features. To the end, the accuracy of the link prediction algorithm increased by designing the optimization operation accurately. Results: The proposed method applied to 4 datasets named Cora, Wikipedia, Blog catalog, Drug-drug-interaction, and the results are compared with laplacian, Node2vec, and GAE methods. Experimental results show an average accuracy achievement of 0.620, 0.723, 0.875, and 0.845 on the mentioned datasets, and confirm that the link prediction can effectively improve the prediction performance using network embedding based on global similarity.
    کلید واژگان
    Complex network
    Link prediction
    Node embedding
    Deep neural network
    Artificial Intelligence

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahid Rajaee Teacher Training University
    سازمان پدید آورنده
    Faculty of Computer Engineering , Shahid Rajaee student Training University,Tehran, Iran
    Faculty of computer engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

    شاپا
    2322-3952
    2345-3044
    URI
    https://dx.doi.org/10.22061/jecei.2020.7135.359
    http://jecei.sru.ac.ir/article_1430.html
    https://iranjournals.nlai.ir/handle/123456789/437517

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب