• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Electrical and Computer Engineering Innovations (JECEI)
    • Volume 8, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A High-Performance Model based on Ensembles for Twitter Sentiment Classification

    (ندگان)پدیدآور
    Asgarnezhad, R.Monadjemi, A.SoltanAghaei, M.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    878.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment target and seek for tweets containing positive, negative, or neutral opinions. This is remarkable for consumers to investigate the products before purchase automatically. Methods: This paper suggests a model for sentiment classification. The goal of this model is to investigate what is the role of n-grams and sampling techniques in Sentiment Classification application using an ensemble method on Twitter datasets. Also, it examines both binary and multiple classifications, which are classified datasets into positive, negative, or neutral classes. Results: Twitter Classification is an outstanding problem, which has very few free resources and not available due to modified authorization status. However, all Twitter datasets are not labeled and free, except for our applied dataset. We reveal that the combination of ensemble methods, sampling techniques, and n-grams can improve the accuracy of Twitter Sentiment Classification. Conclusion: The results confirmed the superiority of the proposed model over state-of-the-art systems. The highest results obtained in terms of accuracy, precision, recall, and f-measure.
    کلید واژگان
    Text Mining
    Text Classification
    Machine Learning
    Ensemble method
    Twitter
    Text Classification

    شماره نشریه
    1
    تاریخ نشر
    2020-01-01
    1398-10-11
    ناشر
    Shahid Rajaee Teacher Training University
    سازمان پدید آورنده
    Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
    Senior Lecturer, School of continuing and lifelong education, National University of Singapore, Singapore, 119077 Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
    Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

    شاپا
    2322-3952
    2345-3044
    URI
    https://dx.doi.org/10.22061/jecei.2020.7100.357
    http://jecei.sru.ac.ir/article_1422.html
    https://iranjournals.nlai.ir/handle/123456789/437513

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب