• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 4, Issue 4
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Soft Computing in Civil Engineering
    • Volume 4, Issue 4
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling the Influence of Environmental Factors on Concrete Evaporation Rate

    (ندگان)پدیدآور
    Papadimitropoulos, VasileiosTsikas, PanagiotisChassiakos, Athanasios
    Thumbnail
    نوع مدرک
    Text
    Regular Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Newly poured concrete opposing hot and windy conditions is considerably susceptible to plastic shrinkage cracking. Crack-free concrete structures are essential in ensuring high level of durability and functionality as cracks allow harmful instances or water to penetrate in the concrete resulting in structural damages, e.g. reinforcement corrosion or pressure application on the crack sides due to water freezing effect. Among other factors influencing plastic shrinkage, an important one is the concrete surface humidity evaporation rate. The evaporation rate is currently calculated in practice by using a quite complex Nomograph, a process rather tedious, time consuming and prone to inaccuracies. In response to such limitations, three analytical models for estimating the evaporation rate are developed and evaluated in this paper on the basis of the ACI 305R-10 Nomograph for “Hot Weather Concreting". In this direction, several methods and techniques are employed including curve fitting via Genetic Algorithm optimization and Artificial Neural Networks techniques. The models are developed and tested upon datasets from two different countries and compared to the results of a previous similar study. The outcomes of this study indicate that such models can effectively re-develop the Nomograph output and estimate the concrete evaporation rate with high accuracy compared to typical curve-fitting statistical models or models from the literature. Among the proposed methods, the optimization via Genetic Algorithms, individually applied at each estimation process step, provides the best fitting result.
    کلید واژگان
    Concrete evaporation rate
    Plastic shrinkage
    Hot weather concreting
    Artificial Neural Networks
    Genetic Algorithms
    Curve-fitting
    Artificial Neural Networks

    شماره نشریه
    4
    تاریخ نشر
    2020-10-01
    1399-07-10
    ناشر
    Pouyan Press
    سازمان پدید آورنده
    Department of Civil Engineering, University of Patras, Patras, 26500, Greece
    Department of Civil Engineering, University of Patras. Patras, 26500, Greece
    Department of Civil Engineering, University of Patras, Patras, 26500, Greece

    شاپا
    2588-2872
    URI
    https://dx.doi.org/10.22115/scce.2020.246071.1254
    http://www.jsoftcivil.com/article_117865.html
    https://iranjournals.nlai.ir/handle/123456789/434843

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب