• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Finance
    • Volume 3, Issue 2
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Iranian Journal of Finance
    • Volume 3, Issue 2
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparing Prediction Methods of Artificial Neural Networks in Extracting Financial Cycles of Tehran Stock Exchange based on Markov Switching and Ant Colony Algorithm

    (ندگان)پدیدآور
    Abdollahian, FarzanehMohammad Pourzarandi, Mohammad EbrahimMinouei, MehrzadHasheminejad, Seyed Mohammad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    862.4کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Original Article
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The stock exchange is considered to be an important establishment to finance long term projects, on one hand, and to collect savings and finance of private section. The stock exchange can be a safe and secure place to invest surplus funds to purchase corporate stocks. As recession and prosperity in this market can have a great role in stockholders` decision-making, it becomes vital to predict these cycles. In this paper, using model MSMH(4)AR(2), we extract the financial cycles of the market. Then, using the ant colony algorithm, we determine the most significant predictors and predict the market financial cycles using neural networks. The results show that the PNN model performs better in predicting the future market with respect to the criteria of mean squared error, the root mean squared error, the model accuracy and kappa coefficient.
    کلید واژگان
    Market Financial Cycles
    Bear Market
    Bull Market
    Artificial intelligence
    Markov Switching Model

    شماره نشریه
    2
    تاریخ نشر
    2019-04-01
    1398-01-12
    ناشر
    Iran Finance Association
    سازمان پدید آورنده
    PhD Candidate, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
    Prof., Department of Finance, Faculty of Management, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
    Assistant Prof., Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
    Assistant Prof., Department of Management, Medical Science Branch, Islamic Azad University, Tehran, Iran.

    شاپا
    2676-6337
    2676-6345
    URI
    https://dx.doi.org/10.22034/ijf.2020.201389.1066
    http://www.ijfifsa.ir/article_103711.html
    https://iranjournals.nlai.ir/handle/123456789/43466

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب