• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling and forecasting US presidential election using learning algorithms

    (ندگان)پدیدآور
    Zolghadr, MohammadAkhavan Niaki, Seyed ArminNiaki, S. T. A.
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    444.8کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president's approval rate, and others are considered in a stepwise regression to identify significant variables. The president's approval rate is identified as the most significant variable, based on which eight other variables are identified and considered in the model development. Preprocessing methods are applied to prepare the data for the learning algorithms. The proposed procedure significantly increases the accuracy of the model by 50%. The learning algorithms (ANN and SVR) proved to be superior to linear regression based on each method's calculated performance measures. The SVR model is identified as the most accurate model among the other models as this model successfully predicted the outcome of the election in the last three elections (2004, 2008, and 2012). The proposed approach significantly increases the accuracy of the forecast.
    کلید واژگان
    Presidential election . Forecasting . Artificial neural network . Support vector regression . Linear regression

    شماره نشریه
    3
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Industrial Engineering, Sharif University of Technology, P.O. Box 11155-9441, Azadi Ave, Tehran, Iran
    Department of Statistics, Eberly College of Arts and Sciences, West Virginia University, Morgantown, USA
    Department of Industrial Engineering, Sharif University of Technology, P.O. Box 11155-9441, Azadi Ave, Tehran, Iran

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676783.html
    https://iranjournals.nlai.ir/handle/123456789/434591

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب