• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Journal of Industrial Engineering, International
    • Volume 14, Issue 3
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel grey–fuzzy–Markov and pattern recognition model for industrial accident forecasting

    (ندگان)پدیدآور
    Ekoi Edem, InyeneobongAyoola Oke, SundayAdekunle Adebiyi, Kazeem
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    961.0کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey–fuzzy–Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey–fuzzy–Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.
    کلید واژگان
    Forecasting . Manufacturing . Accidents . Fuzzy
    grey
    Markov . Pattern recognition

    شماره نشریه
    3
    تاریخ نشر
    2018-09-01
    1397-06-10
    ناشر
    Islamic Azad University, South Tehran Branch
    سازمان پدید آورنده
    Department of Mechanical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
    Department of Mechanical Engineering, Faculty of Engineering, University of Lagos, Lagos, Nigeria
    Department of Mechanical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

    شاپا
    1735-5702
    2251-712X
    URI
    http://jiei.azad.ac.ir/article_676782.html
    https://iranjournals.nlai.ir/handle/123456789/434590

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب