On Hop Roman Domination in Trees
(ندگان)پدیدآور
Jafari Rad, NaderPoureidi, Abolfazlنوع مدرک
TextOriginal paper
زبان مدرک
Englishچکیده
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$. A hopRoman dominating function (HRDF) of a graph $G$ is a function $f: V(G)longrightarrow {0, 1, 2} $ having the property thatfor every vertex $ v in V $ with $ f(v) = 0 $ there is avertex $ u $ with $ f(u)=2 $ and $ d(u,v)=2 $.The weight ofan HRDF $ f $ is the sum $f(V) = sum_{vin V} f(v) $. Theminimum weight of an HRDF on $ G $ is called the hop Romandomination number of $ G $ and is denoted by $ gamma_{hR}(G)$. We give an algorithmthat decides whether $gamma_{hR}(T)=2gamma_{ch}(T)$ for a giventree $T$.{bf Keywords:} hop dominating set, connected hop dominating set, hop Roman dominatingfunction.
کلید واژگان
hop dominating setconnected hop dominating set
hop Roman dominating function
Graph theory
شماره نشریه
2تاریخ نشر
2019-12-011398-09-10
ناشر
Azarbaijan Shahid Madani Universityسازمان پدید آورنده
Separtment of Mathemtics, Shahed University, Tehran, IranDepartment of Mathematics, Shahrood University of Technology, Shahrood, Iran
شاپا
2538-21282538-2136




