Double Roman domination and domatic numbers of graphs
(ندگان)پدیدآور
Volkmann, Lutzنوع مدرک
TextOriginal paper
زبان مدرک
Englishچکیده
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double Roman dominating function $f$ is the sum$sum_{vin V(G)}f(v)$, and the minimum weight of a double Roman dominating function on $G$ is the double Romandomination number $gamma_{dR}(G)$ of $G$.A set ${f_1,f_2,ldots,f_d}$ of distinct double Roman dominating functions on $G$ with the property that$sum_{i=1}^df_i(v)le 3$ for each $vin V(G)$ is called in cite{v} a double Roman dominating family (of functions)on $G$. The maximum number of functions in a double Roman dominating family on $G$ is the double Roman domatic numberof $G$.In this note we continue the study the double Roman domination and domatic numbers. In particular, we presenta sharp lower bound on $gamma_{dR}(G)$, and we determine the double Roman domination and domatic numbers of someclasses of graphs.
کلید واژگان
dominationDouble Roman domination number
Double Roman domatic number
Graph theory
شماره نشریه
1تاریخ نشر
2018-06-011397-03-11
ناشر
Azarbaijan Shahid Madani Universityسازمان پدید آورنده
RWTH Aachen Universityشاپا
2538-21282538-2136




