نمایش مختصر رکورد

dc.contributor.authorNezamolhosseini, Seyyed Alifa_IR
dc.contributor.authorMojtahedzadeh, Seyyed Hosseinfa_IR
dc.contributor.authorGholamnejad, Javadfa_IR
dc.date.accessioned1399-07-09T12:23:59Zfa_IR
dc.date.accessioned2020-09-30T12:23:59Z
dc.date.available1399-07-09T12:23:59Zfa_IR
dc.date.available2020-09-30T12:23:59Z
dc.date.issued2017-01-20en_US
dc.date.issued1395-11-01fa_IR
dc.date.submitted2015-09-17en_US
dc.date.submitted1394-06-26fa_IR
dc.identifier.citationNezamolhosseini, Seyyed Ali, Mojtahedzadeh, Seyyed Hossein, Gholamnejad, Javad. (1395). The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit. روش های تحلیلی و عددی در مهندسی معدن, 6, 73-83.fa_IR
dc.identifier.issn2251-6565
dc.identifier.issn2676-6795
dc.identifier.urihttp://anm.yazd.ac.ir/article_959.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/421265
dc.description.abstractGeo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP) was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R) and least mean squared error (MSE) showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.fa_IR
dc.format.extent1105
dc.format.mimetypeapplication/pdf
dc.languageفارسی
dc.language.isofa_IR
dc.publisherدانشکده مهندسی معدن و متالورژی دانشگاه یزدfa_IR
dc.publisherYazd Universityen_US
dc.relation.ispartofروش های تحلیلی و عددی در مهندسی معدنfa_IR
dc.relation.ispartofJournal of Analytical and Numerical Methods in Mining Engineeringen_US
dc.subjectReserve estimationfa_IR
dc.subjectArtificial Neural Networksfa_IR
dc.subjectiron ore depositfa_IR
dc.subjectChoghart minefa_IR
dc.subjectمکانیک سنگfa_IR
dc.titleThe Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Depositfa_IR
dc.typeTexten_US
dc.typeمقاله پژوهشیfa_IR
dc.contributor.departmentDept. of Mining and Metallurgy, Yazd University, Iranfa_IR
dc.contributor.departmentDept. of Mining and Metallurgy, Yazd University, Iranfa_IR
dc.contributor.departmentDept. of Mining and Metallurgy, Yazd University, Iranfa_IR
dc.citation.volume6
dc.citation.spage73
dc.citation.epage83


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد