• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات فارسی
    • روش های تحلیلی و عددی در مهندسی معدن
    • دوره 6, ویژه نامه انگلیسی
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات فارسی
    • روش های تحلیلی و عددی در مهندسی معدن
    • دوره 6, ویژه نامه انگلیسی
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit

    (ندگان)پدیدآور
    Nezamolhosseini, Seyyed AliMojtahedzadeh, Seyyed HosseinGholamnejad, Javad
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    1.079 مگابایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    مقاله پژوهشی
    زبان مدرک
    فارسی
    نمایش کامل رکورد
    چکیده
    Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP) was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R) and least mean squared error (MSE) showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.
    کلید واژگان
    Reserve estimation
    Artificial Neural Networks
    iron ore deposit
    Choghart mine
    مکانیک سنگ

    تاریخ نشر
    2017-01-20
    1395-11-01
    ناشر
    دانشکده مهندسی معدن و متالورژی دانشگاه یزد
    Yazd University
    سازمان پدید آورنده
    Dept. of Mining and Metallurgy, Yazd University, Iran
    Dept. of Mining and Metallurgy, Yazd University, Iran
    Dept. of Mining and Metallurgy, Yazd University, Iran

    شاپا
    2251-6565
    2676-6795
    URI
    http://anm.yazd.ac.ir/article_959.html
    https://iranjournals.nlai.ir/handle/123456789/421265

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب