نمایش مختصر رکورد

dc.contributor.authorEstaji, Alien_US
dc.contributor.authorMahmoudi Darghadam, Ahmaden_US
dc.date.accessioned1399-07-09T12:10:35Zfa_IR
dc.date.accessioned2020-09-30T12:10:35Z
dc.date.available1399-07-09T12:10:35Zfa_IR
dc.date.available2020-09-30T12:10:35Z
dc.date.issued2020-04-01en_US
dc.date.issued1399-01-13fa_IR
dc.date.submitted2020-03-23en_US
dc.date.submitted1399-01-04fa_IR
dc.identifier.citationEstaji, Ali, Mahmoudi Darghadam, Ahmad. (2020). Free ideals and real ideals of the ring of frame maps from $mathcal P(mathbb R)$ to a frame. Algebraic Structures and Their Applications, 7(2), 93-113. doi: 10.29252/as.2020.1798en_US
dc.identifier.issn2382-9761
dc.identifier.issn2423-3447
dc.identifier.urihttps://dx.doi.org/10.29252/as.2020.1798
dc.identifier.urihttp://as.yazd.ac.ir/article_1798.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/416814
dc.description.abstractLet $mathcal F_{mathcal P}( L)$ ($mathcal F_{mathcal P}^{*}( L)$) be   the $f$-rings   of all (bounded) frame maps from $mathcal P(mathbb R)$ to a frame $L$. $mathcal F_{{mathcal P}_{infty}}( L)$ is  the family of all $fin mathcal F_{mathcal P}( L)$ such that  ${uparrow}f(-frac 1n, frac 1n)$ is compact for any $ninmathbb N$ and the subring  $mathcal F_{{mathcal P}_{K}}( L)$ is the family of all   $fin mathcal F_{mathcal P}( L)$ such that ${{,mathrm{coz},}}(f)$ is compact. We  introduce  and study  the concept of   real ideals in $mathcal F_{mathcal P}( L)$ and $mathcal F_{mathcal P}^*( L)$. We  show  that every maximal ideal of $mathcal F_{mathcal P}^{*}( L)$ is   real, and also  we study the relation between the conditions ``$L$ is compact" and ``every maximal ideal of $mathcal F_{mathcal P}(L)$ is real''. We prove  that for every   nonzero real Riesz map $varphi colon mathcal F_{mathcal P}( L)rightarrow mathbb R$,  there is an element  $p$ in $Sigma L$ such that $varphi=widetilde {p_{{{,mathrm{coz},}}}}$<br />  if $L$ is a zero-dimensional frame for which $B(L)$ is a sub-$sigma$-frame  of   $L$ and every maximal ideal of $mathcal F_{mathcal P}( L)$ is real. We show  that $mathcal F_{{mathcal P}_{infty}}(L)$  is equal to the intersection of all  free maximal ideals of $ mathcal F_{mathcal P}^{*}(L) $ if $B(L)$ is a sub-$sigma$-frame  of a zero-dimensional frame  $L$   and also,  $mathcal F_{{mathcal P}_{K}}(L)$ is equal to the intersection of all free ideals $mathcal F_{mathcal P}( L)$   (resp.,  $mathcal F_{mathcal P}^*( L)$) if $L$ is a zero-dimensional frame.  Also, we study free ideals and fixed ideals of    $mathcal F_{{mathcal P}_{infty}}( L)$ and  $mathcal F_{{mathcal P}_{K}}( L)$.en_US
dc.format.extent379
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherYazd Universityen_US
dc.relation.ispartofAlgebraic Structures and Their Applicationsen_US
dc.relation.isversionofhttps://dx.doi.org/10.29252/as.2020.1798
dc.subjectLattice-ordered ringen_US
dc.subjectZero-dimensional frameen_US
dc.subject$F_{mathcal P}$-realcompacten_US
dc.subjectReal Riesz mapen_US
dc.subjectFree idealen_US
dc.subjectReal idealen_US
dc.titleFree ideals and real ideals of the ring of frame maps from $mathcal P(mathbb R)$ to a frameen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentFaculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Postal Code 9617976487, Sabzevar, Iranen_US
dc.contributor.departmentFaculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.en_US
dc.citation.volume7
dc.citation.issue2
dc.citation.spage93
dc.citation.epage113
nlai.contributor.orcid0000-0001-9416-6041


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد