| dc.contributor.author | Estaji, Ali | en_US |
| dc.contributor.author | Mahmoudi Darghadam, Ahmad | en_US |
| dc.date.accessioned | 1399-07-09T12:10:35Z | fa_IR |
| dc.date.accessioned | 2020-09-30T12:10:35Z | |
| dc.date.available | 1399-07-09T12:10:35Z | fa_IR |
| dc.date.available | 2020-09-30T12:10:35Z | |
| dc.date.issued | 2020-04-01 | en_US |
| dc.date.issued | 1399-01-13 | fa_IR |
| dc.date.submitted | 2020-03-23 | en_US |
| dc.date.submitted | 1399-01-04 | fa_IR |
| dc.identifier.citation | Estaji, Ali, Mahmoudi Darghadam, Ahmad. (2020). Free ideals and real ideals of the ring of frame maps from $mathcal P(mathbb R)$ to a frame. Algebraic Structures and Their Applications, 7(2), 93-113. doi: 10.29252/as.2020.1798 | en_US |
| dc.identifier.issn | 2382-9761 | |
| dc.identifier.issn | 2423-3447 | |
| dc.identifier.uri | https://dx.doi.org/10.29252/as.2020.1798 | |
| dc.identifier.uri | http://as.yazd.ac.ir/article_1798.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/416814 | |
| dc.description.abstract | Let $mathcal F_{mathcal P}( L)$ ($mathcal F_{mathcal P}^{*}( L)$) be the $f$-rings of all (bounded) frame maps from $mathcal P(mathbb R)$ to a frame $L$. $mathcal F_{{mathcal P}_{infty}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${uparrow}f(-frac 1n, frac 1n)$ is compact for any $ninmathbb N$ and the subring $mathcal F_{{mathcal P}_{K}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${{,mathrm{coz},}}(f)$ is compact. We introduce and study the concept of real ideals in $mathcal F_{mathcal P}( L)$ and $mathcal F_{mathcal P}^*( L)$. We show that every maximal ideal of $mathcal F_{mathcal P}^{*}( L)$ is real, and also we study the relation between the conditions ``$L$ is compact" and ``every maximal ideal of $mathcal F_{mathcal P}(L)$ is real''. We prove that for every nonzero real Riesz map $varphi colon mathcal F_{mathcal P}( L)rightarrow mathbb R$, there is an element $p$ in $Sigma L$ such that $varphi=widetilde {p_{{{,mathrm{coz},}}}}$<br /> if $L$ is a zero-dimensional frame for which $B(L)$ is a sub-$sigma$-frame of $L$ and every maximal ideal of $mathcal F_{mathcal P}( L)$ is real. We show that $mathcal F_{{mathcal P}_{infty}}(L)$ is equal to the intersection of all free maximal ideals of $ mathcal F_{mathcal P}^{*}(L) $ if $B(L)$ is a sub-$sigma$-frame of a zero-dimensional frame $L$ and also, $mathcal F_{{mathcal P}_{K}}(L)$ is equal to the intersection of all free ideals $mathcal F_{mathcal P}( L)$ (resp., $mathcal F_{mathcal P}^*( L)$) if $L$ is a zero-dimensional frame. Also, we study free ideals and fixed ideals of $mathcal F_{{mathcal P}_{infty}}( L)$ and $mathcal F_{{mathcal P}_{K}}( L)$. | en_US |
| dc.format.extent | 379 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Yazd University | en_US |
| dc.relation.ispartof | Algebraic Structures and Their Applications | en_US |
| dc.relation.isversionof | https://dx.doi.org/10.29252/as.2020.1798 | |
| dc.subject | Lattice-ordered ring | en_US |
| dc.subject | Zero-dimensional frame | en_US |
| dc.subject | $F_{mathcal P}$-realcompact | en_US |
| dc.subject | Real Riesz map | en_US |
| dc.subject | Free ideal | en_US |
| dc.subject | Real ideal | en_US |
| dc.title | Free ideals and real ideals of the ring of frame maps from $mathcal P(mathbb R)$ to a frame | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Faculty of Mathematics and Computer Sciences,
Hakim Sabzevari University,
Postal Code 9617976487,
Sabzevar,
Iran | en_US |
| dc.contributor.department | Faculty of Mathematics and Computer Sciences,
Hakim Sabzevari University,
Sabzevar,
Iran. | en_US |
| dc.citation.volume | 7 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 93 | |
| dc.citation.epage | 113 | |
| nlai.contributor.orcid | 0000-0001-9416-6041 | |