Free ideals and real ideals of the ring of frame maps from $mathcal P(mathbb R)$ to a frame
(ندگان)پدیدآور
Estaji, AliMahmoudi Darghadam, Ahmadنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $mathcal F_{mathcal P}( L)$ ($mathcal F_{mathcal P}^{*}( L)$) be the $f$-rings of all (bounded) frame maps from $mathcal P(mathbb R)$ to a frame $L$. $mathcal F_{{mathcal P}_{infty}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${uparrow}f(-frac 1n, frac 1n)$ is compact for any $ninmathbb N$ and the subring $mathcal F_{{mathcal P}_{K}}( L)$ is the family of all $fin mathcal F_{mathcal P}( L)$ such that ${{,mathrm{coz},}}(f)$ is compact. We introduce and study the concept of real ideals in $mathcal F_{mathcal P}( L)$ and $mathcal F_{mathcal P}^*( L)$. We show that every maximal ideal of $mathcal F_{mathcal P}^{*}( L)$ is real, and also we study the relation between the conditions ``$L$ is compact" and ``every maximal ideal of $mathcal F_{mathcal P}(L)$ is real''. We prove that for every nonzero real Riesz map $varphi colon mathcal F_{mathcal P}( L)rightarrow mathbb R$, there is an element $p$ in $Sigma L$ such that $varphi=widetilde {p_{{{,mathrm{coz},}}}}$ if $L$ is a zero-dimensional frame for which $B(L)$ is a sub-$sigma$-frame of $L$ and every maximal ideal of $mathcal F_{mathcal P}( L)$ is real. We show that $mathcal F_{{mathcal P}_{infty}}(L)$ is equal to the intersection of all free maximal ideals of $ mathcal F_{mathcal P}^{*}(L) $ if $B(L)$ is a sub-$sigma$-frame of a zero-dimensional frame $L$ and also, $mathcal F_{{mathcal P}_{K}}(L)$ is equal to the intersection of all free ideals $mathcal F_{mathcal P}( L)$ (resp., $mathcal F_{mathcal P}^*( L)$) if $L$ is a zero-dimensional frame. Also, we study free ideals and fixed ideals of $mathcal F_{{mathcal P}_{infty}}( L)$ and $mathcal F_{{mathcal P}_{K}}( L)$.
کلید واژگان
Lattice-ordered ringZero-dimensional frame
$F_{mathcal P}$-realcompact
Real Riesz map
Free ideal
Real ideal
شماره نشریه
2تاریخ نشر
2020-04-011399-01-13
ناشر
Yazd Universityسازمان پدید آورنده
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Postal Code 9617976487, Sabzevar, IranFaculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
شاپا
2382-97612423-3447




