Some results on the symmetric doubly stochastic inverse eigenvalue problem
(ندگان)پدیدآور
Xu, W.-R.Chen, G.-L.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic matrix $A$ with $sigma$ as its spectrum, then the list $sigma$ is s.d.s. realizable, or such that $A$ s.d.s. realizes $sigma$. In this paper, we propose a new sufficient condition for the existence of the symmetric doubly stochastic matrices with prescribed spectrum. Finally, some results about how to construct new s.d.s. realizable lists from the known lists are presented.
کلید واژگان
Inverse eigenvalue problemsymmetric doubly stochastic matrix
sufficient condition
15-XX Linear and multilinear algebra; matrix theory
شماره نشریه
3تاریخ نشر
2017-06-011396-03-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, P. R. China.Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai, 200241, P. R. China.
شاپا
1017-060X1735-8515




