نمایش مختصر رکورد

dc.contributor.authorMao, Y.en_US
dc.date.accessioned1399-07-09T12:03:56Zfa_IR
dc.date.accessioned2020-09-30T12:03:56Z
dc.date.available1399-07-09T12:03:56Zfa_IR
dc.date.available2020-09-30T12:03:56Z
dc.date.issued2017-04-01en_US
dc.date.issued1396-01-12fa_IR
dc.date.submitted2014-08-06en_US
dc.date.submitted1393-05-15fa_IR
dc.identifier.citationMao, Y.. (2017). The Steiner diameter of a graph. Bulletin of the Iranian Mathematical Society, 43(2), 439-454.en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.urihttp://bims.iranjournals.ir/article_941.html
dc.identifier.urihttps://iranjournals.nlai.ir/handle/123456789/414625
dc.description.abstract‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $n,k$ be‎ ‎two integers with $2leq kleq n$‎. ‎Then the Steiner‎ ‎$k$-eccentricity $e_k(v)$ of a vertex $v$ of $G$ is defined by‎ ‎$e_k(v)=max {d(S),|,Ssubseteq V(G)‎, |S|=k‎, and vin S‎‎}$‎. ‎Furthermore‎, ‎the Steiner $k$-diameter of $G$ is‎ ‎$sdiam_k(G)=max {e_k(v),| ‎vin V(G)}$‎. ‎In 2011‎, ‎Chartrand‎, ‎Okamoto and Zhang showed that $k-1leq sdiam_k(G)leq n-1$‎. ‎In this‎ ‎paper‎, ‎graphs with $sdiam_3(G)=2,3,n-1$ are characterized‎, ‎respectively‎. ‎We also consider the Nordhaus-Gaddum-type results for‎ ‎the parameter $sdiam_k(G)$‎. ‎We determine sharp upper and lower‎ ‎bounds of $sdiam_k(G)+sdiam_k(overline{G})$ and $sdiam_k(G)cdot‎ ‎sdiam_k(overline{G})$ for a graph $G$ of order $n$‎. ‎Some‎ ‎graph classes attaining these bounds are also given.en_US
dc.format.extent182
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoen_US
dc.publisherSpringer and the Iranian Mathematical Society (IMS)en_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subjectDiameter‎en_US
dc.subject‎Steiner tree‎en_US
dc.subject‎Steiner $k$-diameter‎en_US
dc.subject‎complementary graphen_US
dc.subject05-XX Combinatoricsen_US
dc.titleThe Steiner diameter of a graphen_US
dc.typeTexten_US
dc.typeResearch Paperen_US
dc.contributor.departmentDepartment of Mathematics‎, ‎Qinghai Normal University‎, ‎Xining‎, ‎Qinghai 810008‎, ‎China.en_US
dc.citation.volume43
dc.citation.issue2
dc.citation.spage439
dc.citation.epage454


فایل‌های این مورد

Thumbnail

این مورد در مجموعه‌های زیر وجود دارد:

نمایش مختصر رکورد