| dc.contributor.author | Mao, Y. | en_US |
| dc.date.accessioned | 1399-07-09T12:03:56Z | fa_IR |
| dc.date.accessioned | 2020-09-30T12:03:56Z | |
| dc.date.available | 1399-07-09T12:03:56Z | fa_IR |
| dc.date.available | 2020-09-30T12:03:56Z | |
| dc.date.issued | 2017-04-01 | en_US |
| dc.date.issued | 1396-01-12 | fa_IR |
| dc.date.submitted | 2014-08-06 | en_US |
| dc.date.submitted | 1393-05-15 | fa_IR |
| dc.identifier.citation | Mao, Y.. (2017). The Steiner diameter of a graph. Bulletin of the Iranian Mathematical Society, 43(2), 439-454. | en_US |
| dc.identifier.issn | 1017-060X | |
| dc.identifier.issn | 1735-8515 | |
| dc.identifier.uri | http://bims.iranjournals.ir/article_941.html | |
| dc.identifier.uri | https://iranjournals.nlai.ir/handle/123456789/414625 | |
| dc.description.abstract | The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $n,k$ be two integers with $2leq kleq n$. Then the Steiner $k$-eccentricity $e_k(v)$ of a vertex $v$ of $G$ is defined by $e_k(v)=max {d(S),|,Ssubseteq V(G), |S|=k, and vin S}$. Furthermore, the Steiner $k$-diameter of $G$ is $sdiam_k(G)=max {e_k(v),| vin V(G)}$. In 2011, Chartrand, Okamoto and Zhang showed that $k-1leq sdiam_k(G)leq n-1$. In this paper, graphs with $sdiam_3(G)=2,3,n-1$ are characterized, respectively. We also consider the Nordhaus-Gaddum-type results for the parameter $sdiam_k(G)$. We determine sharp upper and lower bounds of $sdiam_k(G)+sdiam_k(overline{G})$ and $sdiam_k(G)cdot sdiam_k(overline{G})$ for a graph $G$ of order $n$. Some graph classes attaining these bounds are also given. | en_US |
| dc.format.extent | 182 | |
| dc.format.mimetype | application/pdf | |
| dc.language | English | |
| dc.language.iso | en_US | |
| dc.publisher | Springer and the Iranian Mathematical Society (IMS) | en_US |
| dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | en_US |
| dc.subject | Diameter | en_US |
| dc.subject | Steiner tree | en_US |
| dc.subject | Steiner $k$-diameter | en_US |
| dc.subject | complementary graph | en_US |
| dc.subject | 05-XX Combinatorics | en_US |
| dc.title | The Steiner diameter of a graph | en_US |
| dc.type | Text | en_US |
| dc.type | Research Paper | en_US |
| dc.contributor.department | Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China. | en_US |
| dc.citation.volume | 43 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 439 | |
| dc.citation.epage | 454 | |