The Steiner diameter of a graph
(ندگان)پدیدآور
Mao, Y.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $n,k$ be two integers with $2leq kleq n$. Then the Steiner $k$-eccentricity $e_k(v)$ of a vertex $v$ of $G$ is defined by $e_k(v)=max {d(S),|,Ssubseteq V(G), |S|=k, and vin S}$. Furthermore, the Steiner $k$-diameter of $G$ is $sdiam_k(G)=max {e_k(v),| vin V(G)}$. In 2011, Chartrand, Okamoto and Zhang showed that $k-1leq sdiam_k(G)leq n-1$. In this paper, graphs with $sdiam_3(G)=2,3,n-1$ are characterized, respectively. We also consider the Nordhaus-Gaddum-type results for the parameter $sdiam_k(G)$. We determine sharp upper and lower bounds of $sdiam_k(G)+sdiam_k(overline{G})$ and $sdiam_k(G)cdot sdiam_k(overline{G})$ for a graph $G$ of order $n$. Some graph classes attaining these bounds are also given.
کلید واژگان
DiameterSteiner tree
Steiner $k$-diameter
complementary graph
05-XX Combinatorics
شماره نشریه
2تاریخ نشر
2017-04-011396-01-12
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China.شاپا
1017-060X1735-8515




