Co-centralizing generalized derivations acting on multilinear polynomials in prime rings
(ندگان)پدیدآور
Dhara, B.Kar, S.Pradhan, K. G.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ $(=Z(U))$ the extended centroid of $R$. Let $0neq ain R$ and $f(x_1,ldots,x_n)$ a multilinear polynomial over $C$ which is noncentral valued on $R$. Suppose that $G$ and $H$ are two nonzero generalized derivations of $R$ such that $a(H(f(x))f(x)-f(x)G(f(x)))in C$ for all $x=(x_1,ldots,x_n)in R^n$. one of the following holds: $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $b,p,qin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xq$ for all $xin R$ with $a(p-q)in C$; there exist $p,qin U$ such that $H(x)=px+xq$ for all $xin R$, $G(x)=qx$ for all $xin R$ with $ap=0$; $f(x_1,ldots,x_n)^2$ is central valued on $R$ and there exist $qin U$, $lambdain C$ and an outer derivation $g$ of $U$ such that $H(x)=xq+lambda x-g(x)$ for all $xin R$, $G(x)=qx+g(x)$ for all $xin R$, with $ain C$; $R$ satisfies $s_4$ and there exist $b,pin U$ such that $H(x)=px+xb$ for all $xin R$, $G(x)=bx+xp$ for all $xin R$.
کلید واژگان
Prime ringgeneralized derivation
extended centroid
16-XX Associative rings and algebras
شماره نشریه
6تاریخ نشر
2016-12-011395-09-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India.Department of Mathematics, Jadavpur University, Kolkata-700032, W.B., India.
{Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India.
شاپا
1017-060X1735-8515




