Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
(ندگان)پدیدآور
Ashraf, M.Parveen, N.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if characteristic of $R$ is different from two and $[d(U),d(U)]_{sigma,tau}={0},$ then $R$ is commutative. Commutativity of $R$ has also been established in case if $[d(R),d(R)]_{sigma,tau}subseteq C_{sigma,tau}.$
کلید واژگان
Prime-ringsderivations
ideal
involution map
16-XX Associative rings and algebras
شماره نشریه
5تاریخ نشر
2016-10-011395-07-10
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.
شاپا
1017-060X1735-8515




