A module theoretic approach to zero-divisor graph with respect to (first) dual
(ندگان)پدیدآور
Momtahan, E.Baziar, M.Safaeeyan, S.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. We observe that over a commutative ring $R$, $gf$ is connected and diam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle, then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then $gf$ is finite if and only if $M$ is finite. Also if $gf=emptyset$, then $f$ is monomorphism (the converse is true if $R$ is a domain). If $M$ is either a free module with ${rm rank}(M)geq 2$ or a non-finitely generated projective module there exists $fin M^*$ with ${rm rad}(gf)=1$ and ${rm diam}(gf)leq 2$. We prove that for a domain $R$ the chromatic number and the clique number of $gf$ are equal.
کلید واژگان
Zero-divisor graphClique number
Chromatic number
Module
16-XX Associative rings and algebras
شماره نشریه
4تاریخ نشر
2016-08-011395-05-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Department of Mathematics, Yasouj University, Yasouj,75914, Iran.Department of Mathematics, Yasouj University, Yasouj,75914, Iran.
Department of Mathematics, Yasouj University, Yasouj,75914, Iran.
شاپا
1017-060X1735-8515




