Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales
(ندگان)پدیدآور
Yan, R. A.Sun, S. R.Han, Z. L.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1 $$ $$ u(0)+u^{Delta}(0)=0,;;u(1)+u^{Delta}(1)=0, $$ where $mathbb{T}$ is a general time scale with $0,1in mathbb{T}$, $^c{Delta}^{alpha}$ is the Caputo $Delta$-fractional derivative. We investigate the existence and uniqueness of solution for the problem by Banach's fixed point theorem and Schaefer's fixed point theorem. We also discuss the existence of positive solutions of the problem by using the Krasnoselskii theorem.
کلید واژگان
Fractional differential equationTime scales
Boundary-value problem
Fixed-point theorem
34-XX Ordinary differential equations
شماره نشریه
2تاریخ نشر
2016-04-011395-01-13
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, P R ChinaSchool of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, P R China
School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, P R China
شاپا
1017-060X1735-8515




