On the decomposable numerical range of operators
(ندگان)پدیدآور
Zamani, YousefAhsani, Simaنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in
(V_{chi}(H))$ be the operator induced by $Tin
text{End}(V)$. The decomposable numerical range $W_{chi}(T)$ of
$T$ is a subset of the classical numerical range $W(K(T))$ of $K(T)$ defined as:$$
W_{chi}(T)={(K(T)x^{ast }, x^{ast}):x^{ast } is a decomposable unit tensor}.$$
In this paper, we study the interplay between the geometric properties of $W_{chi}(T)$ and the algebraic properties of $T$. In fact, we extend some of the results of [C. K. Li and A. Zaharia, Decomposable numerical range on orthonormal decomposable tensors, Linear Algebra Appl. 308 (2000), no, 1-3, 139--152] and [C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc. 354 (2002), no. 2, 807--836], to non-linear irreducible characters.
کلید واژگان
symmetry class of tensorsdecomposable numerical range
induced operator
15-XX Linear and multilinear algebra; matrix theory
20-XX Group theory and generalizations
شماره نشریه
2تاریخ نشر
2014-04-011393-01-12
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Sahand University of TechnologySahand University of Technology
شاپا
1017-060X1735-8515




