Quasirecognition by the prime graph of L_3(q) where 3 < q < 100
(ندگان)پدیدآور
Salehi Amiri, S. S.Khalili Asboei, A.Iranmanesh, A.Tehranian, A.نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G$ be a finite group. We construct the prime graph of $ G $,which is denoted by $ Gamma(G) $ as follows: the vertex set of thisgraph is the prime divisors of $ |G| $ and two distinct vertices $ p$ and $ q $ are joined by an edge if and only if $ G $ contains anelement of order $ pq $.In this paper, we determine finite groups $ G $ with $ Gamma(G) =Gamma(L_3(q)) $, $2 leq q $, then $L_3(q) $ is quasirecognizable by prime graph, i.e., if $G$is a finite group with the same prime graph as the finite simplegroup $L_3(q)$, then $G$ has a unique non-Abelian composition factorisomorphic to $L_3(q)$. As a consequence of our results we provethat the simple group $L_{3}(4)$ is recognizable and the simplegroups $L_{3}(7)$ and $L_{3}(9)$ are $2-$recognizable by the primegraph.
کلید واژگان
Prime graphelement order
simple group
linear group
20-XX Group theory and generalizations
شماره نشریه
2تاریخ نشر
2013-05-011392-02-11
ناشر
Springer and the Iranian Mathematical Society (IMS)سازمان پدید آورنده
Islamic Azad UniversityIslamic Azad University
Tarbiat Modares University
Islamic Azad University
شاپا
1017-060X1735-8515




