Stable Gaussian radial basis function method for solving Helmholtz equations
(ندگان)پدیدآور
Rashidinia, JalilKhasi, Manoochehr
نوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for solving Helmholtz equations. In this paper, the eigenfunction expansions are rebuilt based on Chebyshev polynomials which are more suitable in numerical computations. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed method for solving two-dimensional Helmholtz equations.
کلید واژگان
Gaussian radial basis functionsEigenfunction expansion
Helmholtz equations
Sylvester system
شماره نشریه
1تاریخ نشر
2019-01-011397-10-11
ناشر
University of Tabrizسازمان پدید آورنده
School of Mathematics, Iran University of Science and Technology, Tehran, IranSchool of Mathematics, Iran University of Science and Technology, Tehran, Iran
شاپا
2345-39822383-2533



