A note on some lower bounds of the Laplacian energy of a graph
(ندگان)پدیدآور
Milovanovic, IgorMatejic, M.Milosevic, P.Milovanovic, EminaAli, Akbarنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
For a simple connected graph $G$ of order $n$ and size $m$, the Laplacian energy of $G$ is defined as $LE(G)=sum_{i=1}^n|mu_i-frac{2m}{n}|$ where $mu_1, mu_2,ldots,mu_{n-1}, mu_{n}$ are the Laplacian eigenvalues of $G$ satisfying $mu_1ge mu_2gecdots ge mu_{n-1}> mu_{n}=0$. In this note, some new lower bounds on the graph invariant $LE(G)$ are derived. The obtained results are compared with some already known lower bounds of $LE(G)$.
کلید واژگان
Laplacian eigenvalueLaplacian energy (of a graph)
first Zagreb index
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
شماره نشریه
2تاریخ نشر
2019-06-011398-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Faculty of Electronic EngineeringUniversity of Nis, Serbia
University of Nis, Serbia
Faculty of Electronic Engineering
University of Management and Technology, Sialkot, Pakistan
شاپا
2251-86572251-8665




