$mathcal{B}$-Partitions, determinant and permanent of graphs
(ندگان)پدیدآور
Singh, RanveerBapat, Ravindraنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
Let $G$ be a graph (directed or undirected) having $k$ number of blocks $B_1, B_2,hdots,B_k$. A $mathcal{B}$-partition of $G$ is a partition consists of $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is an induced subgraph of $B_i$ for $i=1,2,hdots,k.$ The terms $prod_{i=1}^{k}det(hat{B}_i), prod_{i=1}^{k}text{per}(hat{B}_i)$ represent the det-summands and the per-summands, respectively, corresponding to the $mathcal{B}$-partition $(hat{B_1},hat{B_1},hdots,hat{B_k})$. The determinant (permanent) of a graph having no loops on its cut-vertices is equal to the summation of the det-summands (per-summands), corresponding to all possible $mathcal{B}$-partitions. In this paper, we calculate the determinant and the permanent of classes of graphs such as block graph, block graph with negatives cliques, signed unicyclic graph, mixed complete graph, negative mixed complete graph, and star mixed block graphs.
کلید واژگان
$mathcal{B}$-partitionsigned graph
mixed block graph
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
شماره نشریه
3تاریخ نشر
2018-09-011397-06-10
ناشر
University of Isfahanسازمان پدید آورنده
Department of Mathematics, Indian Institute of Technology Jodhpur, Jodhpur, IndiaStat-Math Unit, ISI Delhi
شاپا
2251-86572251-8665




