Solution to the minimum harmonic index of graphs with given minimum degree
(ندگان)پدیدآور
Liang, MeiliCheng, BoLiu, Jianxiنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The harmonic index of a graph $G$ is defined as $ H(G)=sumlimits_{uvin E(G)}frac{2}{d(u)+d(v)}$, where $d(u)$ denotes the degree of a vertex $u$ in $G$. Let $mathcal{G}(n,k)$ be the set of simple $n$-vertex graphs with minimum degree at least $k$. In this work we consider the problem of determining the minimum value of the harmonic index and the corresponding extremal graphs among $mathcal{G}(n,k)$. We solve the problem for each integer $k (1le kle n/2)$ and show the corresponding extremal graph is the complete split graph $K_{k,n-k}^*$. This result together with our previous result which solve the problem for each integer $k (n/2 le kle n-1)$ give a complete solution of the problem.
کلید واژگان
harmonic indexminimum degree
extremal graphs
05C35 Extremal problems
شماره نشریه
2تاریخ نشر
2018-06-011397-03-11
ناشر
University of Isfahanسازمان پدید آورنده
Guangdong University of Foreign StudiesGuangdong University of Foreign Studies
Guangdong University of Foreign Studies
شاپا
2251-86572251-8665




