• ثبت نام
    • ورود به سامانه
    مشاهده مورد 
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 6, Issue 1
    • مشاهده مورد
    •   صفحهٔ اصلی
    • نشریات انگلیسی
    • Transactions on Combinatorics
    • Volume 6, Issue 1
    • مشاهده مورد
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The condition for a sequence to be potentially $A_{L‎, ‎M}$‎- graphic

    (ندگان)پدیدآور
    Pirzada, ShariefuddinA. Chat, Bilal
    Thumbnail
    دریافت مدرک مشاهده
    FullText
    اندازه فایل: 
    361.2کیلوبایت
    نوع فايل (MIME): 
    PDF
    نوع مدرک
    Text
    Research Paper
    زبان مدرک
    English
    نمایش کامل رکورد
    چکیده
    The set of all non-increasing non-negative integer sequences $pi=(d_1‎, ‎d_2,ldots,d_n)$ is denoted by $NS_n$‎. ‎A sequence $piin NS_{n}$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices‎, ‎and such a graph $G$ is called a realization of $pi$‎. ‎The set of all graphic sequences in $NS_{n}$ is denoted by $GS_{n}$‎. ‎The complete product split graph on $L‎ + ‎M$ vertices is denoted by $overline{S}_{L‎, ‎M}=K_{L} vee overline{K}_{M}$‎, ‎where $K_{L}$ and $K_{M}$ are complete graphs respectively on $L = sumlimits_{i = 1}^{p}r_{i}$ and $M = sumlimits_{i = 1}^{p}s_{i}$ vertices with $r_{i}$ and $s_{i}$ being integers‎. ‎Another split graph is denoted by $S_{L‎, ‎M} = overline{S}_{r_{1}‎, ‎s_{1}} veeoverline{S}_{r_{2}‎, ‎s_{2}} vee cdots vee overline{S}_{r_{p}‎, ‎s_{p}}= (K_{r_{1}} vee overline{K}_{s_{1}})vee (K_{r_{2}} vee overline{K}_{s_{2}})vee cdots vee (K_{r_{p}} vee overline{K}_{s_{p}})$‎. ‎A sequence $pi=(d_{1}‎, ‎d_{2},ldots,d_{n})$ is said to be potentially $S_{L‎, ‎M}$-graphic (respectively $overline{S}_{L‎, ‎M}$)-graphic if there is a realization $G$ of $pi$ containing $S_{L‎, ‎M}$ (respectively $overline{S}_{L‎, ‎M}$) as a subgraph‎. ‎If $pi$ has a realization $G$ containing $S_{L‎, ‎M}$ on those vertices having degrees $d_{1}‎, ‎d_{2},ldots,d_{L+M}$‎, ‎then $pi$ is potentially $A_{L‎, ‎M}$-graphic‎. ‎A non-increasing sequence of non-negative integers $pi = (d_{1}‎, ‎d_{2},ldots,d_{n})$ is potentially $A_{L‎, ‎M}$-graphic if and only if it is potentially $S_{L‎, ‎M}$-graphic‎. ‎In this paper‎, ‎we obtain the sufficient condition for a graphic sequence to be potentially $A_{L‎, ‎M}$-graphic and this result is a generalization of that given by J‎. ‎H‎. ‎Yin on split graphs‎.
    کلید واژگان
    ‎Split graph‎
    ‎complete product split graph‎
    ‎potentially $H$-graphic Sequences
    05C07 Vertex degrees

    شماره نشریه
    1
    تاریخ نشر
    2017-03-01
    1395-12-11
    ناشر
    University of Isfahan
    سازمان پدید آورنده
    University of Kashmir
    University of Kashmir

    شاپا
    2251-8657
    2251-8665
    URI
    https://dx.doi.org/10.22108/toc.2017.20361
    http://toc.ui.ac.ir/article_20361.html
    https://iranjournals.nlai.ir/handle/123456789/405733

    مرور

    همه جای سامانهپایگاه‌ها و مجموعه‌ها بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌هااین مجموعه بر اساس تاریخ انتشارپدیدآورانعناوینموضوع‌‌ها

    حساب من

    ورود به سامانهثبت نام

    آمار

    مشاهده آمار استفاده

    تازه ترین ها

    تازه ترین مدارک
    © کليه حقوق اين سامانه برای سازمان اسناد و کتابخانه ملی ایران محفوظ است
    تماس با ما | ارسال بازخورد
    قدرت یافته توسطسیناوب