Recursive construction of $(J,L)$ QC LDPC codes with girth 6
(ندگان)پدیدآور
Gholami, MohammadRahimi, Zahraنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
In this paper, a recursive algorithm is presented to generate some exponent matrices which correspond to Tanner graphs with girth at least 6. For a $J times L$ exponent matrix $E$, the lower bound $Q(E)$ is obtained explicitly such that $(J,L)$ QC LDPC codes with girth at least 6 exist for any circulant permutation matrix (CPM) size $m geq Q(E)$. The results show that the exponent matrices constructed with our recursive algorithm have smaller lower-bound than the ones proposed recently with girth 6.
کلید واژگان
QC LDPC codesTanner graph
exponent matrix
11H71 Relations with coding theory
11T71 Algebraic coding theory; cryptography
94B25 Combinatorial codes
94B Information and communication, circuits: Theory of error-correcting codes and error-detecting codes
شماره نشریه
2تاریخ نشر
2016-06-011395-03-12
ناشر
University of Isfahanسازمان پدید آورنده
Shahrekord UniversityUniversity of Shahrekord,
شاپا
2251-86572251-8665




