A classification of finite groups with integral bi-Cayley graphs
(ندگان)پدیدآور
Arezoomand, MajidTaeri, Bijanنوع مدرک
TextResearch Paper
زبان مدرک
Englishچکیده
The bi-Cayley graph of a finite group $G$ with respect to a subset $Ssubseteq G$, which is denoted by $BCay(G,S)$, is the graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1), (sx,2)}mid xin G,  sin S}$. A finite group $G$ is called a textit{bi-Cayley integral group} if for any subset $S$ of $G$, $BCay(G,S)$ is a graph with integer eigenvalues. In this paper we prove that a finite group $G$ is a bi-Cayley integral group if and only if $G$ is isomorphic to one of the groups $Bbb Z_2^k$, for some $k$, $Bbb Z_3$ or $S_3$.
کلید واژگان
bi-Cayley graphInteger Eigenvalues
Representations of finite groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05E10 Combinatorial aspects of representation theory
شماره نشریه
4تاریخ نشر
2015-12-011394-09-10
ناشر
University of Isfahanسازمان پدید آورنده
Departmant of Mathematical Sciences, Isfahan University of Technology, Isfahan, IranDepartment of Mathematics, Isfahan University of Technology, Isfahan, Iran
شاپا
2251-86572251-8665




